Search results for "Barium ferrite"

showing 2 items of 2 documents

The Ba2LnFeNb4O15 “tetragonal tungsten bronze”: Towards RT composite multiferroics

2009

Several Niobium oxides of formula Ba2LnFeNb4O15 (Ln = La, Pr, Nd, Sm, Eu, Gd) with the Tetragonal Tungsten Bronze (TTB) structure have been synthesised by conventional solid-state methods. The Neodymium, Samarium and Europium compounds are ferroelectric with Curie temperature ranging from 320 to 440K. The Praseodymium and Gadolinium compounds behave as relaxors below 170 and 300 K respectively. The Praseodymium, Neodymium, Samarium, Europium and Gadolinium compounds exhibit magnetic hysteresis loops at room temperature originating from traces of a barium ferrite secondary phase. The presence of both ferroelectric and magnetic hysteresis loops at room temperature allows considering these mat…

Materials scienceCrystal-chemistryPraseodymium[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]FOS: Physical scienceschemistry.chemical_elementMineralogy02 engineering and technology01 natural scienceschemistry.chemical_compoundTetragonal crystal system0103 physical sciencesMagnetic propertiesGeneral Materials ScienceMultiferroicsBarium ferriteTetragonal tungsten bronzeComposites010302 applied physicsCondensed Matter - Materials ScienceMultiferroic propertiesMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsFerroelectricitySamariumCrystallographychemistryDielectric properties[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Curie temperature0210 nano-technologyEuropiumSolid state Chemistry
researchProduct

Control of barium ferrite decomposition during spark plasma sintering: Towards nanostructured samples with anisotropic magnetic properties

2014

Abstract The sintering of barium ferrite (BaM) nano-sized powders by spark plasma sintering was studied. At the surface of the samples, an iron-rich layer (magnetite) was formed due to the decomposition of BaM and segregation in the secondary phases. To prevent the formation of secondary phases different protection layers between the graphite mould and the sample were used. Their effect on the sample microstructure was studied by X-ray diffraction and scanning electron microscopy. The most suitable protection layer was a highly dense sintered disc of aluminium oxide. Using this dense protection layer, sintered discs of BaM with 82% of theoretical density and grains of 90 ± 50 nm were obtain…

Materials scienceScanning electron microscopeMetallurgySpark plasma sinteringSinteringMicrostructurechemistry.chemical_compoundMagnetic anisotropychemistryMaterials ChemistryCeramics and CompositesAluminium oxideFerrite (magnet)Composite materialBarium ferriteJournal of the European Ceramic Society
researchProduct